SNR-based GNSS-Reflectometry has shown an enormous potential for ground-based altimetry purposes as the frequency of SNR oscillations is directly connected to antenna height from the reflective surface. This technique, which is usually called in the literature as GNSS Interferometric Reflectometry, has been already tested for retrieving snow depth, monitoring water level changes, and measuring lake ice thickness. The considerable advantage of this technique can be listed as the low costs of equipment since a simple standard GNSS receiver would be enough for running a GNSS-IR experiment.
Recently, Cemali Altuntaş, a researcher from Yildiz Technical University, Turkey, has evaluated the potential of android smartphones for the GNSS-IR experiment and antenna height measurement. This well-structured research, which is going to be published in a couple of weeks by Digital Sensor Processing, Elsevier, analyzed the SNR-based retrieved heights obtained from a single-frequency GNSS receiver embbeded in a Xiaomi Mi 8 Lite smartphone, compared with those recorded by a Trimble NetR9 geodetic receiver, and then validated with in-situ measurements. Results show a stunning performance by the smartphone unit compared to the geodetic receiver in terms of height residuals.

As I am not an electrical specialist, I have no clue on why a low-cost GNSS receiver designed for daily routine jobs shows better results in comparison with a standard geodetic receiver, which has been always used for highly professional geodetic observations. Although the positioning precision of Xiaomi Mi 8 Lite has been tested and shown to get close and be comparable to geodetic receivers, but in terms of SNR-based reflectometry, I would be grateful if a specialist could make it a bit clear whether it is related to the noise amount, antenna gain, or any other possible reasons.
Considering the advantageous potentials of smartphone GNSS receivers for reflectometry purposes, one may expand the mobile-based GNSS-IR to a wider range of remote sensing applications, especially those requireing massive data, which can be collected by non-specialists individuals. As an example, GNSS-IR has shown a promising potential for the freshwater ice thickness measurement using a single geodetic receiver. In a study, we placed a GNSS antenna on the ice surface allowing it to receive reflected GNSS signals from the ice-water interface to measure lake ice thickness. Lake ice is known as a very common place for many people who live in cold regions, such as Canada, to spend hours over for, for instance, ice fishing. Therefore, smartphone-based GNSS-IR may offer a new opportunity for individuals allowing them to just leave their smartphones in a short distance away from themselves on the ice surface during their on-ice activities in order to collect reflected GNSS signals from the lake ice. This contribution may be aggregated by a central server to provide a wide coverage of lake ice thickness data with a demonstrated accuracy in our paper.

One thought on “GNSS Reflectometry Using Smartphones; A Potential for Lake Ice Thickness Monitoring”